Assessing the Predictability of Hospital Readmission Using Machine Learning
نویسندگان
چکیده
Unplanned hospital readmissions raise health care costs and cause significant distress to patients. Hence, predicting which patients are at risk to be readmitted is of great interest. In this paper, we mine large amounts of administrative information from claim data, including patients demographics, dispensed drugs, medical or surgical procedures performed, and medical diagnosis, in order to predict readmission using supervised learning methods. Our objective is to gain knowledge about the predictive power of the available information. Our preliminary results on data from the provincial hospital system in Quebec illustrate the potential for this approach to reveal important information on factors that trigger hospital readmission. Our findings suggest that a substantial portion of readmissions is inherently hard to predict. Consequently, the use of the raw readmission rate as an indicator of the quality of provided care might
منابع مشابه
Identifying Diabetic Patients with High Risk of Readmission
Hospital readmissions are expensive and reflect the inadequacies in healthcare system. In the United States alone, treatment of readmitted diabetic patients exceeds 250 million dollars per year. Early identification of patients facing a high risk of readmission can enable healthcare providers to to conduct additional investigations and possibly prevent future readmissions. This not only improve...
متن کاملA Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملThe Relationship Between Performance Indicators and Readmission of Patients With Open Heart Surgery: A Case Study in Iran
Background: Open heart surgery is a prevalent therapeutic intervention for cardiovascular diseases. Significant adverse effects occur after heart surgery, one of which is patient readmission to the hospital. Objective: The present study aimed to determine the relationship between performance indicators and the readmission of patients with open heart surge...
متن کاملAssessment of Risk Factors for Hospital Readmission after Kidney Transplantation
Background and Purpose: Hospital readmission after kidney transplantation is a real challenge for both patients and healthcare systems. Assessment of the risk factors of readmission after kidney transplantation is vital and can reduce morbidity and cost in transplant recipients and donors. The aim of the current study was to determine the risk factors of hospital readmission in patients undergo...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کامل